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Abatract

-, An assignment (spanning union of node-disjoint dicycles) in a directed

graph in called asymmetric if it contains at most one arc of each pair (i,j),

(j,i). We, describe5a class of facets for the asymmetric assignment polytope,

associated with certain odd-length closed alternating trails. The inequalities

defining these facets are also facet defining for the traveling salesman

polytope on the same digraph. Furthermore, this class of facets is distinct

from each of the classes identified earlier.
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1. Introduction

Let G: (NMA) be the complete digraph on n NI node@ with no loop. or

multiple arc., and with costa c, j for every arc (0,3). An assignment in G is a

spanning subgraph that in the node-disjoint union of directed cycles, and the

assignment problem (AP) is

1) mini 1(ctjxtj :i,,jnNqij)

Gat. I(xj JON-fl)) =1 1 a N
(2) I(xitj isM-fi)) = 1 3a N

(3) Xtj a (0, 1) 1aN, j a N - fi).

The assignment problem is a frequently used relaxation of the traveling

salesman Problem (TSP), which (on a digraph) ms. for a minimum cost

directed Hamilton cycle. The TSP can be stated as having the objective

function (1) and a constraint set consisting of (2), (3) and

(4) ENxil iJSi i ISI - 1, S; N, 2 ( 191 j. Ln/2J.

An asymmetric assignment is one that contains at most one member of

every Pair Of arcs (W,), 0909) iLe. contains no directed 2-cycles. The

asymmetric assignment problem (AAP) has the same objective function (1), and

the constraint set (2), (3) and

21 J + 1J I, I 3i a N, I J .

Clearly, (5) is the subset of (4) corresponding to sets S c N such that ISI
2 2. Thus AAP is also a relaxation of the TSP, stronger (tighter) than AP. In

fact, although AAP is closely related to AP, unlike th. latter it is NP-complete

(Garay and Johnson (19601 Sahni (1971). The asymmetric assignment (AA)

polytope P is the convex hull of incidence vectors of asymmetric assignments.

L~e.

P conv (M a (0, 1) 1Al x satisfies (2), (5)).



An arc set S c A that is the subset of an (asymmetric) assignment will be

called an (asymmetric) partial assignment. If (2') denotes the system of

inequalities obtained from (2) by replacing ":" with "<", then the incidence

vectors of asymmetric partial assignments (APA's for short) are those 0-1

vectors satisfying (2'), (5). The APA polytope is

P:= cony (x a (0, 1 1lA  I x satisfies (2'), (5)),

also called the amotoization of P.

The traveling salesman polytope P* is the convex hull of incidence vectors

of tours (directed Hamilton cycles), i.e.

PS :: (x S (O,l)IAI I x satisfies (2), (4)).

Finally, the Anaotoa. traveling saleasan (MM) polytope P* is the convex

hull of incidence vectors of partial tours (arc sets that are subsets of a

tour, i.e.

:= (x S (O,l)IA I x satisfies (2'), (4)).

The polytope P, like P, is easily seen to be full dimensional, i.e. dim

: dim 0 = n(n-l). As to P, since it is contained in the assignient polytope

and contains in turn the traveling salesman polytopo, and the dimension of

these two is known to be the same (Gr8tschsl and Padberg [19851), namely a

n(n-l) - 2n + 1, it follows that dim P = dim P* = n(n-l) - 2n + 1.

In this paper we describe some new classes of facet inducing inequalities

for the traveling salesman polytope P* defined on a directed graph G. These

inequalities define facets of the asymmetric assignment polytope P. They are

associated with certain subgraphu of G called closed alternating t-ails, that

correspond to odd holes of the intersection graph of the coefficient

matrix of the AAP. Section 2 introduces closed alternating trails and

establishes their structural properties. Section 3 uses these properties to

identify sone classes of facet inducing inequalities for P and P* In
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section 4 we prove that for n sufficiently large, these inequalities are also

facet inducing for P and P*. Finally, Section 5 discusses connections with

earlier work.

2. CIosed Alternating Trails and Their Chords

Let G* = (V,B) be the intersection graph of the coefficient matrix of the

system (2), (5) (or the system (2'), (5)). Then G* has a vertex for every arc

of G; and two vertices of G* corresponding, say, to arcs (p,q) and (r,s) of G,

are joined by an edge of G if and only if either p = r, or q = s, or p = s and

q = r. Two arcs of G will be called L1 -adjacent if the corresponding vertices

of G* are adjacent. Clearly, there is a 1-1 correspondence between APA's in G

and vertex packings (independent vertex sets) in G*; and therefore the

APA polytope P defined on G is identical to the vertex packing polytope

defined on G*.

We define an alternating trail in G as a sequence of distinct arcs

T (a, ... , at)

such that for k = I, ... , t - 1, a, and ak+ are G*-adjacent, but ak, al, a ;

k + 1, are not; with the possible exception of at and a. If at and a, are

G*-adjacent the alternating trail T is closed. An arc ak = (p,q) of T is called

forward if T meets p before q; backward if T meets q before p. The

definition of an alternating trail T implies that the direction of the arcs of T

alternates between forward and backward, except for pairs ak, ak+, that form

a directed 2-cycle entered and exited by T through the same node; in which

case ak and a,+, are both forward or both backward arcs. Notice that T

meets a node at most twice, and the number of arcs of T incident from

(incident to) any node is at most 2. Two alternating trails,
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Tj = ((1,2),(3,2),(3,4),(4,3),(5,3).(5,6),(6,5),(6,7))

and

T = ((2.1),(2.4),(3,4),(3,2),(5,2)),

are shown in Figure 1.

Let GET] denote the subdigraph of G generated by T; i.e., G[T] has T as

its arc set, and the endpoints of the arcs of T as its node set. Further, for

any v a N, lot degt(v) and deg7(v) denote the outdegree and indegree,

respectively, in G[T], of the node v.

The length of an alternating trail is the number of its arcs. An

alternating trail will be called even if it is of even length, odd if it is of odd

length.

T 2  al a 5

Figure 1

We will be interested in closed alternating trails (CAT's for short) of odd

length. The reason for this is the following.
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P.p1sith L1. There is a 1-1 correspondence between odd CAT's in G

and odd holes (chordlesa cycles) in G*.

Proo. Follows from the definitions.I

It in well known (see Padberg (1973]) that the odd holes of an undirected

graph gve rise to facets of the vertex packing polytope defined on the

subgraph generated by the odd hole, and that these facets in turn can be

lifted into facets of the polytope defined on the entire graph (see section 4

for details). In order to make the lifting procedure conveniently applicable to

the particular vertex packing polytope associated with G€ , we need the

structural information concerning adjacency relations on G* that will be

developed in this section.

Lot T be a CAT in G. A node of GET] will be called a source, if it is the

common tail of two arcs of T; and a sink, if it is the common head of two arcs

of T. A node of GET] can thus be a source, or a sink, or both, or none. A

node of GET) that is neither a source nor a sink will be called neutral.

Several odd CAT's are illustrated in Figure 2. The sources and sinks of

G[TOI are nodes 1, 2 and 2, 4, respectively, while 3 is neutral. G[T 2 ] has

three neutral nodes, 1, 4 and 6, while nodes 2, 3 and 5 are both sources and

sinks. G(T,] has sources 1 and 4, sinks 2, 3 and 4, while 5 is a neutral node.

Propvo o 2.2. Let T be an odd CAT of length t, with q neutral nodes.

then

(6) 1 ( q < t/3 and q in odd.

Proof. Lot T = (a,,...,at). If q = 0, the arcs of T alternate between

forward and backward, and either as is forward and at is backward, or vice

versa. But this implies that T is even, a contradiction. Hence q > 1.

Now suppose q > t/3. Then T has more than 2t/3 arcs incident with

neutral nodes and less than t/3 arcs not incident with such nodes. Since T

5



(a)

(b)

(c)

Figure 2

has more than t/3 2-cycles rnd less than t/3 arcs left to separate them, there

exists a pair of 2-cycles with a common node. But such a node has indegree

and outdegree greater than 2 in T, contrary to the definition of an alternating

trail. Thus q < t/3.

We have seen above that for q = 0 T is even. For arbitrary q > 0, the

alternating sequence of forward and backward arcs is interrupted q times by

a repetition of type (forward or backward). Thus for q even, the number of

repetitions cancel out, and the fact that a, and a+ are of opposite directions

6
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=Jam for an even T. For q odd, all but one of the repetitions cancel out,

and T must be odd.l

Props" 2.3. Let T be an odd CAT of length t, with a sources, u sinks

and w 2-cycles. Then

(7) + u + w t

Proof. T has 2w arac belonging to 2-cycles and t - 2w arcs not belonging

to 2-cycle.. Every arc of a 2-cycle ham either a source for its tail or a sink

for its head, but not both. Every arc not belonging to a 2-cycle has both a

source for its tail and a sink for its head. Hence

s + u = 1 x w + 2 x (t-2w)/2

= t - WA

In the sequel we will denote by Y the family of APA's in G.

Proposition 2.4. Let T be an odd CAT of length t. Then

(8) max IS (I TI = (t-1)/2.
Say

Furthermore, for any pair of G*-adjacent arcs ak, ak+s of T (with t + 1

1), there exists S & Y, with a k $ S, a, 1,, i S, and IS f) TI = (t-l)/2.

Proof. For any S a Y, S (I T contains no pair of G*-adjacent arcs. The

largest such set clearly has cardinality Lt/2J = (t-l)/2. Further, for any such

S i Y, IT\SI = (t+l)/2, hence T \ S contains a pair of G*-adjacent arcs of T;

and for any pair ak, a k+1 of G-adjacent arcs of T, there exists S z y

containing (t-l)/2 arcs of T \ (ak, ak+1.|

A chord of a CAT T is an arc a a A \ T joining two nodes of GT]. If T

is odd and a = (u,v), a divides T into two disjoint subtrails, one odd (TI) and

one even (T2 ), each of which connects u to v. We distinguish between three

types of chords. A chord (u,v) is of

o type I if it joins a source to a sink (i.e. degt(u) degT(v) 2);

7



o type 2 if it joins a source to a neutral node, or a neutral node to a

sink (i.e. degt(u) + degT(v) = 3) and the even subtrail T2

connecting u to v has its first arc incident from u and its last arc

incident to v;

o type 3 in all other cases.

Figure 3 shows the odd CAT

T, = ((1,2),(3,2),(3,4),(4,3),(5,3)(5,6),(1,6))

with its chords of type 1 (1,3), (3,6), (5,2) in shaded lines.

As T, has no chords of type 2, all other chords (not shown) are of type

3.

Figure 4 shows the odd CAT

T2 = ((1,2),(3,2),(2,3),(2,4),(5,4),(4,5),(4,6),(7,6),(6,7),(6,8),(1,8))

with its chords of type 1 in shaded lines, ((1,4), (1,6), (2,6), (2,8), (4,2), (4,8),

(6,2), (6,4)), and its chords of type 2 in checkered lines , ((1,5), (2,7), (3,6),

(4,3), (5,2), (5,8), (6,5) and (7,4)). All other chords (not shown) are of type 3.

Finally, of the three odd CAT's of figure 2, T , has only chords of type 3;

whereas T2 has three chords of type 1, (2,5), (3,2) and (5,3), and T, has two

chords of type 1, (1,3) and (4,2); all remaining chords are of type 3.

Proposition 2.5. Let T be an odd CAT of length t and for k = 1, 2, 3, let

Ck be the set of chords of T of type k. Then

(9) max Is (T J(c))I = C (t-C2

SZY:ccS (t+l)/2 c g C3

Proof. Let c (u,v), and let T = T, U T2 , where T, and T 2 are the two

subtrails of T connecting u to v. Since T is odd, we may assume w.l.o.g. that

T, is odd and T. is even.
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If c v C,, then c a S implies that S cannot contain the first and last arcs

of T, and T 2 . Hence the maximum number of arcs of T, and T2 contained by

any such S is (IT, I-)/2 and (1T 2 1-2)/2 = IT 2 1/2 - 1, respectively, and the

maximum of the expression on the left-hand side of (9) is (IT 1 -11/2 (arcs of

T,) + IT 21/2 - 1 (arcs of T 2 ) + 1 (the arc c) = (IT,+IT 2 -1)/2 = (t-l)/2.

If c r C 2 , then c t S implies that S cannot contain the first and the last

arc of T 2 (by definition of C 2 , the last arc of T 2 is incident to v) and S

cannot contain both the first and last arcs of T,. Then the maximum number

of arcs of T 2 contained by any S - Y that contains c is, as in the earlier

case, IT 2 1/2 - 1, and the maximum number of arcs of T, is (IT, 1-1)/2, also

like in the earlier case. Thus the maximum of the left-hand side of (9) is

again (t-1)/2.

Finally, if c z C,, S can contain, besides c, (IT, 1 -1)/2 arcs of T, and

IT 2 1/2 arcs of T 2, and the maximum of the left-hand side of (9) is

(IT, 1-1)/2 + IT2 1/2 + 1 = (t+l)/2. I

Proposition 2.6. Let T be an odd CAT of length t and let C, be the set of

chords of T of type 1. Then

(10) max IS r) (TUC , )I = (t-l)/2

Proof. Let S* t Y be such that IS* (' (T(1C,)I = max IS (I (TU C,}f.

W.l.o.g. we may assume that for every neutral node v of G[T], S* F T

contains an arc incident with v. Indeed, should this not be the case for some

v. one can always replace the arc of S* F T incident with the (unique) node

adjacent in T to v, with one of the two arcs incident with v in order to

obtain an APA SO such that ISO () (TUC1 )I = IS* U (TtC,)I.

Let s, u and q denote the number of sources, sinks and neutral nodes,

respectively, of G[T], and let w stand for the number of 2-cycles of T. Let

S* () (TUC,) = S, " S2, where S, is the set of arcs in S* r) T incident with

10



a neutral node, and S 2 = S* () (TUC,) \ S1 . By assumption, IS I1 = q. From

Proposition 2.3 and the fact that q _ w,

a + u < t - q.

Every arc in S 2 has a source for its tail and a sink for its head; every

arc in S, has either a source for its tail or a sink for its head, but not both;

and no two arcs in S I U Sa have a common tail or a common head. Hence

S " S21 _ q + (s+u-q)

< q + 1 (t-2q)

2

or, since t is odd, IS* (I (TUC,)I < (t-lD/2.|

Proposition 2.7. Let G be a complete digraph. Let T be an odd CAT of

length t, and let C, be the set of chords of T of type 1. Then

(11) anx IS (I (T(JCU{a})I = (t+l)i2, V a t A \ (T)C,',

Proof. Since there exists S a I such that IS (I (TUC)I = (t-l)/2, if a is

not a chord then clearly there exists S a Y such that IS (I (TkJC, kJ{a))I =

(t-l)/2 + 1 = (t+l)/2. If a is a chord of type 3, the existence of such S

follows from Proposition 2.5. Also, in both cases (t+l)/2 is the maximum size

of S (I (T(JCI kJ(a)), or else we have a contradiction to Proposition 2.6.

Now let a t C2 , a = (u,v). As before, let T, and T2 be the two subtrails

of T connecting u to v, with T, odd and T2 even. Let S t 3 be such that

a r S and IS fl (TUj{a)) = (t-1)/2. Then S contains (t-3)/2 arcs of T,

namely (IT,I-1)/2 arcs of T, and IT 2 1/2 - I arcs of T2 . Thus T, has two

G*-adjacent arcs not contained in S, say ak and ak+1 , that have either a

common tail or a common head. Suppose node w is the common tail of ak and

ak+l, with degt(w) = 0. (An analogous reasoning holds in case of a common

head.)

ll



W.log., aumo S contains the arc of T , incident from v, my ae (there ie

always some set S with this property among those S a Y such that a a S and

IS (I T U jail : (t-l)/2). Since T, \ (as) is evon and has (ITI-3)/2 arcs in

S, of which the first and last arc cannot belong to S (since the first arc is

G-adjacent to a and the last one is G-adjacent to as), it has two G*-edjacent

arcs not contained in S, my a., a.r,, with a common tail s and dogt(s) = 0, or

a common heed s, and degj(s) = 0. W.Log., suppoe the latter case holds.

Since G is complete, it has an arc c, : (w,s), and this arc is a chord of T of

type 1. Then SO :: S Ui (c,) is an APA that contains (t+l)/2 arcs of

T U (ac )I. I

bmork. If G is not complete, (11) my not hold for some a a Ca. It still

holds for all a a A \ (TJC, UCa).

3. Facets of the Notom Polytaps P and.

We are now ready to characterize the class of facet inducing inequalities

of the APA polytope P associated with odd CAT's. We consider first the sub-

graph generated by an odd CAT.

As mentioned in Section 2. P is the sam as the vertex packing polytope

defined on G$ . Purther, every odd CAT of G corresponds to an odd hole of

G$ . It is well known (Padberg (19731) that odd holes of an undirected graph

give rise to facet inducing inequalities for the vertex packing polyhedron

defined on the subgraph generated by the odd hole. Nevertheless, because of

its simplicity and its usefulness in subsequent developments, we give a direct

proof of this result for our case.

For smy S c A, we denote x(S) = I(xoj (ij)aS).

Pt itiom 3.1. Let T be an odd CAT of length t, and let P be the APA

polytope defined on G(T]. Then the inequality

12



(12) x(?) < (t-l)/2

defimes a fecet of P(0(a).

Prest. From Proposition 2.4, (12) is satisfied by all x i P(GrT Let

? (a,,...,a). Define x1 , P(r(?1 by ul = 1 if i is odd and 1 1 t.

x :0 otherwise, and for k 2 2, .... t, define x" by x = xz:, i -... ,t, with i

- I = t for i = I. Then the vectors xk, k = I, .... t form the rows of a

circulant matrix of order t with (t-l)/2 l's in everv row (and every

column), known to be nonsingular. Hence the t points xk , k 1, .... t, which

are clearly contained in P(O(T]) (1 (x I x(T, = It-l),'21 are affinely inde

pendmt. Tbus (12) defines a facet of P(G't]'.I

Cer*llwy 3.2. ?be inequality '12) defines a facet of POGJTI\

Proaf. Since (GrT1 c P'G[?), the inequality (12) is valid f,

P'G[TP. Since PrG[Ts is full dimesional, V12 does not define an is

proper face. Finally, each of the t affinely independent points xh & P GT1

used in the proof of Proposition 3.1 is a point of PG[T]',, i.e. ani ,n,

deace vector of a partial tour. Thus (12) defines a facet of P#(G[T''.I

Next we will "lift" the inequality (12) to identify inequalities of the

form

,13),  x(T ,  - j( jjxj, : (i.j)aA',T' _ 't 1' 2

that define facet& of P. It is a well-known result in rumbinatorial opt imai,

tion 'see Palberg 1q73:, Neihauser and Trotter '1974', Balas and 7#,-m.

t19841) that if !12) defines a facet of P'GfTl', there exist integers

a$ j , 'i,j a A T T, such that 13) defines a facet of P. Furtherau-.,

for amy ordering (ifl),j(l'., .... 'i(p).j(p)' of the arc set A T, th--r(

exists such a 'not necessarily distinct facet (efining ;no(ualit-,. whist.

coefficients aij can be obtained by solving a sequence f int ,..r ruo rai.5

To be more specifit-, if for k 1, ... , p,. G (NIA,) t h. Igrat)h .uiit r

13



of the arcs in T Ui I(i(1),j(M)), ... , (i(k),j(k))l and their endpoints, the

coefficients of (13) are obtained by setting, for k 1, ... , p,

(14) = (t 1'/2 -

where

2
l~h'~jfk) n siax I (ij vAxi{ik)jk

'5xjj : jrrk'i) I i r N1 \ rifk"

riz r-'lj2, j r Nk fjlk'

XIh J 0, j j(k, "  xlj, ) = 0, i * i(k1

x~j (0, 1), (i,j/ z A,,

and where r(i) and r;(i) are the sets of successors and predecessoru,

reopectively, of nod* i in Gh.

Tt follows from the above definition of the lifting coefficients, that in

,:omparing two inequalities of the form (13), say (13), with coefficients ,

.fnd B1 = with coefficients --j, fur n. given ar 'i ,.j , h1.,

-a if the. rank of ,i ,j l in the sequence associated with '13', is lowe-r

than in the sequence associated with (13)3. So a given coefficient has the

highest value if the corresponding variable is lifted first, and the lowest

value if it is lifted last.

Theorem 3.3. Let G = (NIA) be a complete digraph. Let T be an odd CAT

(f length t, and let C, be the set of chords of T of type 1. Then the

inequality

(!l;I (T ) I : (t- l)/2

i, fin.s a fcu(t of the APA polytope P and the MTS polytope P*.

Pruof. We lift the inequality (12) by taking the arcs of A \ T in any

,)rder such thut all arcs in C, precede all arc-s in A \ (T(UC,). let C, =

(i(l),j(l)) be the ar- in C, whose variable is lifted first. Then the maximumn of

th. integior program (15) in z,(,)J(,) (t-1)/2, since from Proposition 2.5



m sit ax IS(I ma I (TtI'c,P)I -1 =(1-3)/2.
Szl:cj8S SBY:c ,S

Thus &jfjlj(,, = (t-1)/2 - z =  1.

We !lain that a,()J(k) = 1, k 1, ... , m, where ((i(1),j(P), ... , (i(m),j(m)))

:C 1 . Suppose the claim i true for k = 1, ... ,-1, and let k 2. From

Propositions 2.5 and 2.6,

max( S f( (TtM (i(l),j(t)), ... , (i( ),j(M)) : (i( *),j(M)) S) (t-l /2

hence

z,(slj(t) :max (IS om(tl~)jl)..(~-)j~-)l:(~ljmt) ,

(t-3)/2

and thus ai(e)j(e) : (t-l)/2 - z,(s)j(s) = 1, which proves the claim. Thus the

lifting coefficients of all variables corresponding to arcs of C, are equal to I.

Consider now the coefficient of the variable associated with some 'r,-

a 1 A \ (Tt.CO) that is lifted first after the variables corresponding to :,r

in Ct. Let a = (i(m+l),j(m+l)). Since G is complete, from Proposilti :.-

have

max (IS (I (T I(),J(1)), ... , (i(m+l),j(m+l)l : (i(m+1},j(m+li) , S1

= (t+l)/2

and thus

zi(,+,)j(,+,) max(IS () (Tt((i( ),j(l)), ... , (i(m),j(m))l

(i(m+l),i(m+l)) C S} '

=(t+1)/2 - I = (t-l)/2.

Therefore c,,(.,)j(.,) = (t-l)/2 - z,(.+i)(.,+ = 0. Sinrp the v: r: .

associated with the arc a has a coefficient of 0 when it is first in the lift.rng

sequence (among the arcs in A \ (TUC,)), it has a coefficient of 0 also wh,- -

it is in any subsequent position in the sequence.

This proves that the lifting coefficionts of the arcs a P \ 7, aro, fir J:,'

lifting sequence that puts all arcs in C, before all arcs in A \ (T i,

1,5
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4 , = al a Ca

0 a a A \ (TUC,)

Idcb P rovs that (16) defin e facet of P and of P.I

The arc sets corresponding to the support (La. the set of positive

coefficients) of esch inequality (16) in the digraphs with 4, 5 and 6 vertices

are shown (up to isomorphime) in Figures 5 and 6, with the arcs of T and C,

shown in solid and shaded lines, respectively. The number of such

inequalities in 24 for a graph an four nodes, 360 for a graph on five nodes,

and 3,360 for a graph on six nodes.

It is ey to establish the Chvstai rank of the inequalities (16). Chvatal's

[1973.] procedure for generating all the inequalities valid for a polyhedron

defined as the convex hull of integer points satisfying a given set of linear

inequalities Ax ( b consists of recursively applying the following step: take

all undominated positive linear combinations of the inequalities of the current

system and add the resulting inequalities to the system after rounding down

all coefficients to the nearest integer. The initial system Ax ( b is mid to

have rank 0, while the inequalities obtained in the first step of the recursion

have rank 1.

biwn'k .4. The inequalities (16) have Chvatal rank 1.

Pr . each inequality (16) associated with an odd CAT T can be obtained

by adding the equations (2) associated with each source and each sink of

G(T, and the inequalitie associated with each two-cycle of G(T]; then dividing

by two the resulting inequality and rounding down all coefficients to the

nearest integer.I

The inequalities (16) can be expressed in an equivalent form as

inequalities with all efthand-side coefficients equal to 0 or 1. Indeed, lot S

16
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be the set of arcs whose tail is a source of G(T], lot U be the set of arcs

whose head is a sink of G[T]. and let W be the set of arcs contained in a

two-cycle of T.

Tbacam 3.4. A vector x a P I(A) satisfies (16) if and only if it satisfies

(16') x(SUU\W) 1 1(t+1) - q.

Prod. Subtracting from (16) the equation. (2) corresponding to every

source and every sink of G(TJ, and multiplying the resulting inequality by - I

yields (11e).1

There ame no" Inequalities other than the faimily (16) that can be

obtained by lifting the inequality (12), but their description in more

cumbersome. The folowing rules apply to all facet defining inequalities (for

P ad 0*) obtained by sequential lifting from (12). As before, for k

1, 2, 3, let Ck be the set of chords of type k.

" All variables corresponding to chords in C, Wi Ca get a coefficient

of 0 or 1, nd all remininag variables get a coefficient of 0,

irrespective of the lifting seqnce.

" If all variables corresponding to chord, in C, are lifted before all

others, then all rmiablems corresponding to chords in Ct get a

coefficient of 1 ad all remining variables got a coefficient of 0

(this is the family (16)).

" If a variable corresponding to a chord (i,3) s C3 is lifted first, it

sets a coefficient of 1, but them the variables corresponding to

certain chords in C1. %oboee identity depends on (i~j), get a

coefficient of 0, am do all the variables corresponding to arcs in

A \(IC (~))

17
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4. Facets of the Polytopes P and P*

Theorem 4.1. For n > 6 and any odd CAT T in the complete digraph G,

the inequality (16) defines a facet of the AA polytope P.

Proof. Let

F := P (I (x I x(TtC 1 ) = (t-l)/2).

We will show that F is a facet of P by proving that dim F = dim P - 1.

This in turn will be accomplished by showing that for any linear inequality ax

< =o satisfied by all x z P and satisfied with equality by all x v F, the

equation ax = a, is a linear combination of the equations (2) and x(TtJC) =

(t-l)/2.

W.l.o.g., assume the nodes of G to be numbered so that n - I is not a

source and n is not a sink of G(T]. Such a pair always exists. Define

I ain - an-I,n 
i 1, ... , n -

= tojn0 i n

(17)

-,j 1,..., n- 2, n

0 j-n-1

We will show that there exists a scalar To, which together with the

X,, .Uj satisfies

1X8 + UJ if (ij) 9 T U C,

+ )j + 7, if (ij) E T U C,

and

'19) oi;N) i " * (Aj : .jN) + ((t-l)/2) 0 .

For (i,j) i T U C2, we have to show that

18') -- + j

ain + an-- i,J - =n--

19



This is obviously true for i = n - 1, j c N - (n - 1} and for i z N - {n), j

=n. For i $ n - 1, j X n, i # j, consider x F such that xj = x,,-,, = 1

and x, = Xj,ni = 0. For n > 6 such x always exists. Define x' by 4j =

]a. p =0, X;n = ) -,,j = I, 3' = xkg for all other k, t. Then x is an

asymmetric assignment and x'(Tt)C,) (t-l)/2; i.e. x - F. By assumption, ax

ax' = at, hence

ax - px = aIJ + 0n- -, 1n - xn-i,J = 0,

i.e. (18') holds.

For (ij) a T Li C1 , define

(20) 7,j 911 -X )-Aj.

We will show that the w1 j are all equal.

Let (ij) c T Ui C1 be such that i is a source and j is a sink of G[T], and

there exists a node v of G[T], i 0 v $ j, that is both a source and a sink.

Such (i,j) always exists. For every sink J of G[T], A i, j, choose some

k $ i, j, I such that (ki) X T Ui C,1 (kj) 9 T Ui C, (such k obviously

exists). Since i is a source and 9 is a sink of G[T], (i,l) t T () C,. Now

consider x c F such that xij -X = 1 and xjk = xti = 0. Define x' by XNIj

0 x, t = k1 ' = 1, and Krs xrs for all other r, s. Then x r F, hence tx

= ax' = ao and thus

(21) J + akt = ait + (Xkj"

Similarly for every source p of G[T], p $ i, j, choose some q $ i, j, p such

that (p,q) 9 T () C1 , (i,q) j T Li C1 (such q always exists). Since p is a

source and j is a sink of G[T], (p,j) - T Ui C1 " Consider now 'K c F such that

XlJ = ypq = 11 3jp = q = 0. Define 3' by -fj = q = Of -'q -- j 1, and -'

1,. for all other r, s. Then x' a F, ax : x, and thus

(22) aIij + apq = Gjq + ctpj.

20



Substituting into (21) the expression from (20) for oj and ait, and the

expression from (18) for akj and aki, we obtain

Trij + X +Aj X k +t =Ni rt +1 + M Xk + Pj

or !ij = 7I.

Similarly, substituting into (22) the expression from (20) for @j

and apj, and the expression from (18) for *Iq and apq, we get

Wij + Xi4 +Aj + Xp + ,Iq = 7 pq + Xp , + + Xi + Pq

or w, j 7 pj. Thus wtJ = wit for every sink 9 of G(T] and 7,j = rpj for

every source p of G(T]; and since G[T] has a node v $ i, j that is both a

source and a sink, it follows that 7i - .j Hence all w j, (ij) P; T U C,,

are equal to some iro , and thus (18) holds.

Finally, since every x t F has exactly (t-l)/2 positive

components xij with (i,j) z T (I C,, and exactly one positive component Xjj

for every i a N and every j t N, substituting into ax = * the expression for

as j given by (18) yields

ao = I (XI+A/J Wo)xi J + (xi+.Ej)Xij
(i,j)ZTUC, (ij)XTuC,

(XI : iaN) + (A: jtN) + ((t-l)/2)wo

which is (19).I

Theorem 4.2. For n > 10 and any odd CAT T incident with at least 8 and

at most n - 2 nodes, the inequality (16) defines a facet of the TS polytope Pt*.

Proof. Our proof will parallel that of Theorem 4.1, the main differencc

being that while interchanging a pair of appropriate indices in an assignment

produces another assignment, only a triple interchange can get one from a

given tour to another tour.

Let

F* :=P () (x I x(TUC1 ) = (t-l)/2}.

21
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We will show that dim F * = dim P* - 1 by proving that if ax < a, for all

x c P* and ax = ao for all x z F*, then ax = ao is a linear combination of (2)

and x(TUC) = (t-l)/2.

W.Lo.g., assume that nodes n - 1 and n are not incident with T, and

define Xj, Jj by (17). As in the proof of Theorem 4.1, we will show the

existence of a scalar 7T0 which together with these X1 , jpj, satisfies the

relations (18) and (19).

For (ij) T U C1, we have to show (18'), which is obviously true for i

n - 1, j N -{n - 1), and for i t N - {n), j = n. For i 9 n - 1, j X n, i ; j,

let k, I and p be distinct nodes, other than i, j, n - I and n, such that none

of the arcs (k,t), (p,I), (p,j) belong to T U C1 . Consider x, I t F* such that

Xk8 = XpU = Xni,n 1 I, 34t = 3pj = fin 1 1, and the tour defined by x (by E)

traverses the arc (k,t) after (p,j) and before (n-l,n) (before i,n)). Since G[T]

has T nodes, with 8 < -r < n - 2, such tours always exist (see Figure 7 for an

illustration). Now define x and 19' by ,a Xp - 0, Xk = XpI xn-,,j

1, Xrg = Xrs for all other r, s; and - : -p : =i 0, ,. 1 :,

3s:rs for all other r, s. Then x', X define tours, each of which has the

same number of arcs in T () C, as x and 3; hence x', x' t F. By assumption,

we then have ax = o = ax' and a5E = xo a5'. Thus

ax - ax = aki + apj + an-*, - cXk -n apt - On-,j 0

af - 0X a Oki + apj + a1 ,n - akn - apt - a j = 0

and subtracting the two equations yields

a1i = a1 n + tn-.,j - On-*n

as required by (18').

For (ij) - T U] C,, we introduce multipliers 7
Tjj defined as in (20), and

then show that they are all equal to some 7T0. For this purpose, let

22
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(i,j) # T U C1  arcs of T not in the tour 4-

arcs of T U) C1 in the tour 4mm..

arcs of the tour not in T U) C,

n1k 'NI k

n x,= (j,a,k,i,b,i,n,n--l,c,p)

Xk* = Xpj 0 t

Xkn - p- Xj - 1

x=(j,a,k,n,n-1,c,p,Q,b,i)

Figure 7b
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(ij) r T U C, be such that i is a source and j is a sink of G[T], and there

exists a node v of G[T], i $ v $ j, that is both a source and a sink.

For every sink q of G[T], q 9 i, j, choose a pair of arcs k, A, distinct

from i, j, q, n - 1 and n, such that I is a source and (k,j) $ T U) C 1 .

Consider x, X t F* such that x,, - xkj = xq = Xn -in - 3kj -- iq = 1,

and the tour defined by x (by R) traverses (n-l,n) after (k,j) and before (1,q)

(before (i,q)). Such x, X always exist (see Figure 8 for an illustration). Now

define x and x by , xkj -Xq 0 , ,q x-j -- , xrs-Xrsor
X--' n q -- n -' s =xrs

all other r, a; and n-, =- - 0, - - -, -- for

all other r, s. Then x' and Z' are tours. Furthermore, since T U) C, contains

exactly one of the arcs (n-l,n), (k,j), (1,q) (namely (S,q), since i is a source

and q is a sink of G[T]) and exactly one of the arcs (n-l,q), (k,n) and (*,j)

(namely (Sj)), the tours defined by x and x contain the same number of arcs

of T U C1 . Similarly, since T U C, contains exactly one of the three arcs

(n-l,n), (kj), (i,q) (namely (i,q)), and exactly one of the arcs (n-l,q) (k,n),

(i,j) (namely (ij)), the tours defined by X and 3' contain the same number of

arcs of T U C1. Hence x x PR F and ax ax a0 = ax = ax. Thus

etn-.,n + °Ikj + atq - an Iq - akn - ag 3 - 0

(Xn-1n + Okj + Mjq - an-1,q - akf - 0

and subtracting the two equations yields

(23) afj + alq = aiq + a gj

Similarly, for every source p of G[T], p $ i, j, one can choose a pair of

nodes h, m, distinct from i, j, p, n - I and n, such that m is a sink and

(i,h) X T U C1 . Consider x, X z F* such that x,_,,n = xih 5 Xpm = 1, - n

-Xh - XPJ = 1, and the tour defined by x (by 3) traverses (i,h) after (n-l,n)

and before (p,m) (before (p,j)). Now define x' by 01._,,, = , ,-',h

XIm = Xpn = 1, XY- = Xrs for all other r, s; and ' by -' - -'



(i,j) £ T J C, arcs of T not in the tour

4 . arcs of T H C, in the tour

A, q&NN varcs of the tour not in T U C1

n n(ik j,n 1,q,c,b,

X'= (ikn, ,,n 1k, 0cb

Figure 8a
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0. _, - - 1, W. for all other r, a. Then x' and T are

tours, and since (p~j) a T U CI, (i,m) a T () C1 (as p and i are sources and j

and m are winks of G[T]), the tours defined by x and x', contain the same

number of arcs in T t) C,. Thus x', ' a F and

n-ln + Oih + pM - *n-ih - Ole - pn 0

0fn-lpf + Glh + Qpj - a.-Ih - OIJ - *pn- 0

Subtracting the last two equations then yields

(24) =Ij + GM, = a.Pi + Ol..

Then substituting into (23) and (24) the expression from (20) for cxrg such

that (rs) & T U C, and the expression from (18) for Or, such that

(r,s) $ T Wi C, yields 7j = itq for every sink q of G(TJ, and 7lj = pj for

every source p of G(T]. Since G[TJ has a node v # i, j that is both a source

and a sink of G(T], it follows that n'h- no for all (k,a) z T () C, and thus

(18) holds.

Finally, substituting into ax *a the expression for aj given by (191

yields (19).

The pairs of tours x, x' and 1, T' used in the proof of Theorem 4.2 are

illustrated in Figure 7 for (i,j) $ T Ui C, and in Figure 8 for (ij) t T (U C,.

5. Relation to Barlier Work

Several classes of valid, and sometimes facet defining, inequalities for the

traveling salesman polytope on a directed graph are known. For a thorough

survey of the relevant literature see Grtschel and Padberg [1985].

First. if

S, j y j :(i,j),E) < =

is a valid inequality for the TS polytope on an undirected graph, ther

(x j+x) "I < J) < CXo

2I



is a valid inequality for the TS polytope on the corresponding directed graph.

Thus the various classes of facet defining inequalities for the TS polytope on

an undirected graph, like the subtour eliminations inequalities (Dantzig,

Pulkerson and Johnson (1964]), the comb inequalities (Chvatal [1973b],

Gr8tschel and Padberg (1979]), the clique tree inequalities (Grdtschel and

Puileyblank [1986]) have their correspondents as valid inequalities for the TS

polytope on a directed graph. Whether or not thes inequalities are facet

defining has not yet been elucidated for every class. The subtour elimination

inequalities are facet defining for P* for n ) 5 and all subtours of length

1, 2 < < n - 2;

the comb inequalities are facet defining for P for n > 6, but whether they

are facet defining for P$ is an open question (except if n = 6 or 7, in which

case they are not). As to the more general clique tree inequalities, it is not

knmn at this point whether they are facet defining for either P* or P$.

All the above classes share the feature that the inequalities belonging to

them are symmetric in the sense that an arc (ij) belongs to the support of

such an inequality if and only if (j,i) does. The inequalities associated with

odd CAT's do not have this property, except for some special cases; so they

are distinct from each of the above classes. As to those special cases, they

arise when a subset of T together with the chords of type 1 form a complete

digraph; in which case this complete digraph becomes the handle of a comb,

whose teeth are the directed 2-cycles of T. Such is the case, for instance,

with the odd CAT of length 7 shown in Figure 6 (c). More generally, all comb

inequalities corresponding to combs whose handle H and teeth TI, i = 1, ... , k

satisfy

29
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are special case of odd CAT inequalities and thus, from Theorem 4.2, for I Hi

56 and n ) 12 they define facets of P$.

Several classes of asymetric valid inequalities for the TS polytope on a

digraph have beena identified by Gr6tachol [1977] and Gr6tachel and

Wakabayashi (1961 a, b]. Some of these are derived by lifting the (weak)

subtour elimination inequalitiee. As the support of each such inequality

contains a subtour, the odd CAT inequalities, whose support contains no

subtour except for some special cases, are obviously distinct from this class.

Other classes are associated with hypohamiltonian and hypoeomihamiltonian

graphs; again, these do not subsume the odd CAT inequalities. Finally, the

class of so-called Tk-inequahities (Gr8tschel [19771) overlap with the odd CAT

inequalities for k = 2, in that the T 2-inequality is precisely the odd CAT

inequality on four nodes depicted in Figure 5.

6. Conclusion

We have given a partial linear description of the asymmetric assignment

polytope P defined on a digraph G, by identifying a family of valid

inequalities associated with odd closed alternating trails of G. These "'

inequalities are facet defining for P, and for sufficiently large graphs and

sufficiently long trails, they are also facet defining for the traveling salesman

polytope P* on G.

It is to be expected that these inequalities will provide improved bounds

and enhanced solution procedures for the asymmetric TSP when used as

cutting planes either in the context of a pivoting algorithm like that of
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Gr6tachel and Padberg [19861, or in the context of a Lagrangesn-based

algorithm that takes the cuts in the objective function with appropriate

multipliers, like that of Balsa and Christofides (1981).
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